我们来一起梳理一下人工智能与深度学习的关系。
人工智能
首先,大家所谈论的人工智能可以分为两个层面:“强人工智能”和“ 弱人工智能”。其中:
- 弱人工智能
希望借鉴人类的智能行为,研制出更好的工具以减轻人类智力劳动,类似于“高级仿生学”。
- 强人工智能
希望研制出达到甚至超越人类智慧水平的人造物,具有心智和意识、能根据自己的意图开展行动,可谓“人造智能”。
AI技术现在所取得的进展和成功,是缘于“弱人工智能”而不是“强人工智能”的研究。要想让AI借鉴人类的智能行为,关键的一个环节是让AI模拟人类的学习行为。
人工智能是一个很大的概念,包含了很多内容,其主要目的是想让机器能拥有类似于人的智能:比如说识别东西、对话、看书、艺术创作、游戏娱乐等等;
深度学习是人工智能领域的一种方法。也就是说深度学习可以实现人工智能的一些要求,比如说识别东西、对话。
深度学习其实是机器学习的深化,本质就是分配权重的多重调整,是多条数学公式。机器学习就是对输入的数据进行分配权重,对分配权重后的数据通过一定的判断然后输出合适的数据。
权重就是数据的一个数值,代表这个数据重不重要,有多重要。分配权重的工具就是数学,线性代数,离散数学之类的。
机器学习
设定一个规则,使数据通过这个规则,对数据的一些特征进行判断,过滤掉一些无意义的,或者是不重要的数据。而如何调整这个规则的判断条件,更准确的过滤数据,就是机器学习。
一般而言,机器学习的规则需要专业的人主动设置。
深度学习
在机器学习的基础上,添加多层规则,数据依次经过每层规则,规则的层数称为深度,层数越多,数据过滤越充分,增加深度和调整规则的过程,就是深度学习。
人工智能时代已经到来,AlohaGO的击败李世石成为了围棋界的神话,让许多人震惊不已。那么AlphaGo是怎么产出的呢?它是源自于人工智能的深度学习。
随着深度学习技术的成熟,AI人工智能正在逐步从尖端技术慢慢变得普及。许多人也都在疑惑,什么叫做深度学习算法呢?再此猎维科技狡辩就给大家科普一下,什么叫做人工智能深度学习?
深度学习是一种机器学习的方法,它试图使用包含复杂结构或由多重非线性变换构成的多个处理层(神经网络)对数据进行高层抽象的算法。深度学习可以理解为神经网络的发展,神经网络是对人脑或生物神经网络基本特征进行抽象和建模,可以从外界环境中学习,并以与生物类似的交互方式适应环境。
例如,正在接受计算机视觉训练的深度学习系统可能会首先学会识别出现在图像中的物体边缘。这些信息被传送到下一层,可能会学习识别角落或其他特征。它一遍又一遍地经历同样的过程,直到系统最终开发识别物体甚至识别人脸的能力。
人工智能深度学习j教学班顾名思义就是针对人工智能深度学习技术开展的教学课程。学习这些课程,可以了解人工智能技术,参加人工智能项目实战,毕业后去从事人工智能相关岗位的工作。
深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构,通过组合低层特征形成更加抽象的高层属性或类别特征,从而对数据进行表征。简单来说机器学习是实现人工智能的方法,深度学习是实现机器学习的技术。
深度学习技术现在在国内的应用已经比较成熟了,除了大型企业之外,中小型企业对于深度学习的人才需求还是比较大的,但是,国内高校对于人工智能的人才培养体系尚不健全,培训也就成为了产出人工智能人才的主要渠道之一。
中公教育新推出了关于深度学习的课程,内容涉及计算机视觉、语音识别、自然语言处理等多种重点应用技术点,匹配企业岗位所需75%的招聘要点,对于想入行人工智能的人学习还是很合适的。
前面朋友说的我就不重复了,了解深度学习,还需要认识到深度学习在人工智能中的位置。如果说信息技术是第三次工业革命的核心,那么人工智能所代表的智能则是下一次工业革命的核心力量。
2016年,谷歌阿尔法围棋以4:1战胜围棋世界冠军、职业九段棋手李世石,不仅让深度学习为人们所知,而且掀起了人工智能的“大众热”。此后,人工智能越来越热,从机器人开发、语音识别、图像识别、自然语言处理到专家系统等不断推陈出新。
同时,人工智能技术越来越多地融入到我们的生活中,出现了智能音箱、智能助理、智能机器人等。
根据应用领域的不同,人工智能研究的技术也不尽相同,目前以机器学习、计算机视觉等成为热门的AI技术方向。但是,平常接触中,很多人分不清人工智能、机器学习、深度学习和强化学习的关系。
简单说,人工智能范围最大,涵盖机器学习、深度学习和强化学习。如果把人工智能比喻成孩子大脑,那么机器学习是让孩子去掌握认知能力的过程,而深度学习是这种过程中很有效率的一种教学体系。
最近好像有中科院的专家到中公讲课,有兴趣的可以了解一下。
我的经验告诉我,它就是一个随机碰撞。
找出一定误差内的因子。
没有思考能力。
这个词是个复合词,两部分都有具体的含义,解释如下::
1、人工智能:人类通过直觉可以解决的问题,如:自然语言理解,图像识别,语音识别等,计算机很难解决,而人工智能就是要解决这类问题;
2、深度学习:其核心就是自动将简单的特征组合成更加复杂的特征,并用这些特征解决问题;
两者综合起来释义如下:
1、人工智能深度学习:自动将简单的特征组合成更加复杂的特征,并用这些特征解决计算机很难解决的问题(计算机很难解决人类的直觉遇到的问题)。
深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构,通过组合低层特征形成更加抽象的高层属性或类别特征,从而对数据进行表征。简单来说机器学习是实现人工智能的方法,深度学习是实现机器学习的技术。难度当然肯定有的,当然这块学出来工作薪资肯定高,这块属于人工智能领域嘛,人工智能在未来那肯定是大火的行业,高科技啊,我朋友在了解这方面的,他之前在中公教育学的java编程最近听中公老师再说这个的学习,他们课程是和中科院自动化研究所合作的,上课老师也是中科院的,中科院自动化研究所可以说是中国人工智能领域的领头羊。你可以去中公了解下。