大数据时代是现代生产力水平发展到一定阶段的必然产物。数据不断产生,而且越来越多。尽管当今“大数据”潮流让我们获得了海量数据,但掌握这些海量数据本身并无意义,真正的意义体现在对数据信息进行专业化的处理。这就使统计学面临新的机遇和挑战,应用统计学应运而生。
亚马逊首席科学家 Andreas Weigend 有着数据就是新的石油的观点。作为一种资产,大数据实现盈利的关键就在于,提高对海量数据的分析处理能力,通过特殊的技术实现大数据的增值。随着云计算的发展,大数据也同云计算产生了密不可分的联系,两者互为依托,实现了双赢。
应用统计学作为一门以研究数据为主的学科,经过多年的发展,其理论体系已经较为完善。应用统计学的崛起是统计学中实质性科学派、方法论科学派和通用方法论派的对立中发展而来的。应用统计学发展成熟的标志主要有两个: 一是统计学在应用范围方面的不同,在管理、教育、医疗卫生、产业发展等领域确立了牢固的科学地位。二是统计学在学科间的渗透,同政治学、金融学以及其他新兴科技学科的良好融合。
应用统计学主要运用扎实的数学知识,实现采集数据、设计调查问卷和处理调查数据的工作,同时结合分析结果,去解决相关领域所面临的实际问题。在统计分析过程中,应用统计学所利用的数据是结构化数据,分析工具主要是计算机,注重统计方法的运用,比如用统计软件( 比如 R/SAS) 进行数据分析处理,从结果中得到一些我们需要的数据,进而得出相应的结论。
目前,大数据的相关研究一定程度上运用了统计学的知识,例如对大数据的分类整合、数据信息的采集和搜索、数据表达的分析等。应用统计与大数据虽有交流,但是大数据并未被应用统计学充分利用,两者在使用模式、数据形式和运用方式等方面都存在着不同程度的差异,因此两者的联系并不紧密。
统计学是一个大类,是通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。应用统计学强调的是统计学理论在实际中的应用,比如如何正确使用参数估计、假设检验、方差分析、相关与回归、时间序列分析、指数分析等应用统计方法。而经济统计学是统计学在经济学上的理论发展以及应用。有些人把经济统计学归到应用统计学中,其实是错误的。因为经济统计学除了统计学的经济学应用外,同样也对统计学的理论发展起到指导作用。