第一步,规化与建设企业数据资产,包括:
1,企业所有人员、机器、物资、产品、技术图文资料、业务流程、岗位职责、业务单据等的数字化标准建立与相关基础数据的梳理。
2,企业数字化工作体系的建设。数字化工作体系与传统工作体系的本质差异,在于数字化工作体系要求企业内部每一步工作,都必須要产生并收集到有价值的数据,同时,可以把本步所产生的有价值数据,实时发送并共享到其他工作步骤和环节,并能通过计算获得精准的工作成果,以指导并提升每一步的工作成效。
3,企业数字化管理体系的建设。数字化的管理体系相较传统信息化与人工管理体系,核心要素在于对数据的要求,以及对数据贯通与一体化、精细化的要求,尤其突出数字化的管理思维和决策思维的要求。数字化工作体系的重点在于建设和采集数据,数字化管理体系的要点则在于规划设计和挖掘应用数据。
第二步,逐步形成和强化数据治理能力。
1,充分利用标准化文档和标准化流程、制度,形成对企业内部工作管理的有效规范。
2,建成长效的数字化理念与工作岗位数字化技能的培訓机制,将数据作为基本工作绩效落实到岗位职责要求中。
传统企业数据化管理:
1、数据连接、采集、整理
数据是数字化的基础,数字化转型的第一步往往都是先进行数据连接。要分析什么业务,分析的指标有哪些,需要的数据有哪些,当下已有哪些数据,哪些数据不足需要定向收集。
2、数据分析及可视化
数据连接完成后,下一步是基于业务需求分析和可视化展示。分析分为历史和当下数据按指标、业务归类展示,生成报表、可视化报告。涉及到具体问题比方说找到带来80%营收的20%家优质代理商,则需要数据挖掘技术来追踪定位。
数字化成熟到一定程度,各个业务都应该有相应的可视化模块,运用商务智能BI系统或制造智能MI系统,这是企业实现数字可视化的重要工具。
3、精益分析
在第一阶段和第二阶段推进一段时间之后,企业多数已经具备自动化和信息化的基础,往往这时候企业会开始思考:“我有这么多数据,能看到这么多报表,我怎么提升效率降低成本呢?”因此,进入数字化转型的第三阶段精益分析。
传统企业在推行精益/工业工程方法和工具时,工业工程师或咨询师一般通过现场诊断分析来发现企业生产运营管理的问题,并指导企业持续改善的路线。
绝大部分生产制造企业在精益化方面相对落后,而精益分析的阶段需要企业利用数字化软硬件技术和工具,来固化、简化并优化精益化的过程,将原来经验驱动的现场诊断,逐步转化并结合实时数据驱动的数字化诊断,更客观、更及时、更全面、更智能地去发现企业生产系统中存在的浪费和问题,这也是智能制造中所谓“智能”的第一小步。
4、高阶分析
基于第三阶段精益分析的成果,企业及其管理者被赋能,能够更简单、更准确、更及时地发现企业的生产运营问题后,就面临到如何分析问题产生原因并且提供问题解决方案的挑战。
这时候就该是大数据和人工智能技术的用武之地,通过机器学习等技术对最佳历史实践进行提炼并预测,通过APS等技术为企业的计划排程提供智能决策,通过知识图谱等技术构建企业的知识库,通过计算机视觉听觉等技术替代现场枯燥无聊的重复劳动工位等。
针对于每一种行业、每一道工艺、每一个流程节点,都可能有一些工业应用场景需要大数据和人工智能技术,来辅助管理人员进行快速决策,乃至解放管理人员进行自动决策,从而真正实现企业智能制造,是为高阶分析。
5、全面转型
当企业推进内部的智能高阶分析至一定阶段之后,必然需要与全供应链的其他智能企业进行连接,实现智能化的全面转型。
传统企业要想数据化管理就是以上几个步骤。如企业条件许可,也可引进管理软件的进行应用,来提高管理效率。数夫软件是专业定位家居领域的管理软件开发商,产品有智能制造整体解决方案、营销端的CRMDRP、制造端的ERPMESAPSWMS、供应链端的SCM系统等。
这里有个好东东,可以方便地实现各种数据化管理和流程管理:
蓝点通用管理系统