数据分析师的日常工作是什么?

1

数据分析是一个偏综合的岗位

(1)数据清洗:80%的精力在处理清洗数据,包括字段提取、整合归一、规范化。数据在现有的商业环境中才开始逐渐重视,故数据采集整理非常重要,许多公司都在开始重视数据背后的重要价值,故会把历史数据拿出来处理加工。

(2)数据进行初加工:这里包含了数据描述性统计(比如极值,最值,均值,方差,分布),这种初步加工目的是为了大体了解这些数据的基本概况,这是初始业务必须要做的,从这些数据中一定程度上还能能够反映日常业务变况。

(3)探索性分析:有了对数据大体掌握后我们会做一些分析和预测,譬如相关性分析,主成分分析,回归分析,时间序列预测等等

(4)报表制作:这里会涉及到做基本报表,反映日常业务态势包含基本业务总体概况,同环比分析,并去查找业务逻辑数据表现的原因,当然里面会涉及到数据可视化图表(折线图,旋风图,散点图,柱形图)等等,诸多数据分析方法论

2

简单来说,数据分析师的主要工就只有四类:

  • 从0到1搭建数据分析体系
  • 数据分析工具化,产品化
  • 支撑领导、部门决策的专题分析及业务方向探索
  • 数据规范制定及提升数据质量等基础工作

一、从0到1搭建数据分析体系

大部分公司还处于此阶段,可能是全新搭建,可能是新业务线搭建。

1.搭建数据监控体系

搭建数据分析体系第一步是搭建数据监控体系,定期查看业务发展情况,让业务发展结果可量化,可衡量。

通过这套监控体系,业务侧可以得到实时或者准实时的效果反馈,根据业务效果指导业务决策;领导层可以了解业务发展情况,做到心中有数。

3

  数据分析师主要工作有哪些?

  数据分析师,可能乍一看就是一个工作岗位,但其实不然,它也有很多细分和要求,下面就由我来给大家讲讲数据分析师都有哪些工作职位。

  1、数据分析师主要技能要求:数据库知识(SQL至少要熟悉)、基本的统计分析知识、EXCEL要相当熟悉,对SPSS或SAS有一定的了解,对于与网站相关的业务还可能要求掌握GA等网站分析工具,当然PPT也是必备的。

  2、数据挖掘工程师主要技能要求:

  1)数据库必须精通。很多时候,你模型的数据预处理,可能完成在数据库里完成,你用到的数据库技巧更高。

4

数据分析是指用统计分析方法对收集的数据进行分析提取有用信息和形成结论而对数据加以详细研究和概括总结并指导实际工作和生活

(1)获取数据

获取相关的数据,是数据分析的前提。

(2)数据处理

获取数据,把数据处理成自己想要的东西。

5

具体每日每周比较琐碎工作不一一列举,但是主要工作内容应该集中以下:

一,用技术手段获取项目中真正需要的数据。

二,确保数据的来源途径,数据的真实性,准确性。

三,把最终所需有价值的数据组织在一起,以便用以分析,同时设计数据的结构,以保证数据有效地供所有用户检索。

四,为大数据项目组织数据并建立分析模型。

6

了解企业现状与竞争环境,风险评判与决策支持,能够充分利用大数据带来的价值,在进行数据挖据与展现后,呈现给企业决策者的将是一份清晰、准确且有数据支撑的报告。

7

这个我觉得我们可以交流一下,我从事的差不多也是数据分析师,但是刚入职没多久,很多事情都不清楚。不过主要还是要先了解业务。现在所做的工作还处于取数阶段。数据分析师的工作内容就是数据采集、数据存储、数据提取、数据挖掘、数据分析,数据展现等。要学的还有很多,还得加油努力!

8

一般来讲,典型的数据分析包含六个步骤,分别是明确思路、收集数据、处理数据、分析数据、展现数据以及撰写报告,下面我们具体讲一讲数据分析的六大步骤

1、明确思路

明确数据分析的目的以及思路是确保数据分析过程有效进行的首要条件。它作用的是可以为数据的收集、处理及分析提供清晰的指引方向。可以说思路是整个分析流程的起点。首先目的不明确则会导致方向性的错误。当明确目的后,就要建分析框架,把分析目的分解成若干个不同的分析要点,即如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标。只有明确了分析目的,分析框架才能跟着确定下来,最后还要确保分析框架的体系化,使分析更具有说服力。

这一步其实就是具化分析的内容,把一个需要进行数据分析的事件,拆解成为一个又一个的小指标,这样一来,就不会觉得数据分析无从下手。而且拆解一定要体系化,也就是逻辑化。简单来说就是先分析什么,后分析什么,使得各个分析点之间具有逻辑联系。避免不知从哪方面入手以及分析的内容和指标被质疑是否合理、完整。所以体系化就是为了让你的分析框架具有说服力。可以参照的方法论有,用户行为理论、PEST分析法、5W2H分析法等等。

2、收集数据

9

很高兴为您解答。

一、数据分析师的三大场景 :

  1. 过去数据 分析问题在哪里? 主要是分析以前的数据,查看问题,然后做成可视化报表。

  2. 现在数据 呈现数据

  3. 未来数据 业务预测

10

回到问题本身来看,数据分析师的日常工作,重点在于日常,那我也就不扯太远了,就以互联网行业的数据分析师为例,简单给大家分享一下吧。

1、排查指标问题

正所谓一天之计在于查指标,数据分析师的一天是从排查用户数据、日活率、用户使用时长等重要指标,对于一些波动较大的,需要找出原因并给出合理解释。利用拆分维度的方法来看不同维度的指标波动,然后进行各个角度的分析。

2、做报表

对于日常的一些核心指标、数据,或者新计算的指标都需要存到报表中,做成BI报表,以备老板查看数据和后期分析。不同公司会有不同的报表制作方式,但照目前来看很多公司都会购买做报表的软件,就像Tableau、Smartbi等,可以快速便捷地制作出美观的报表。

关于作者: 网站小编

码农网专注IT技术教程资源分享平台,学习资源下载网站,58码农网包含计算机技术、网站程序源码下载、编程技术论坛、互联网资源下载等产品服务,提供原创、优质、完整内容的专业码农交流分享平台。

热门文章