前言:
为了怕自己忘记,赶紧发一下文章,这是一篇关于如何将训练好的scikit-learn模型进行保存以及再次呼叫,代码中的範例只是简单的5个数字的加法。
有两个方法可以保存scikit-learn模型,分别是joblib和pickle,这边演示的是joblib。
训练并且保存模型:
# Save Model Using joblibimport numpy as npimport joblibfrom sklearn.linear_model import LinearRegressionmodel = LinearRegression(fit_intercept=False)X_train = np.random.rand(1000, 5)*100y_train = np.sum(X_train, axis=1)model.fit(X_train, y_train)joblib.dump(model, 'LR_model')
呼叫并且测试模型:
# load the model from diskimport numpy as npimport joblibloaded_model = joblib.load('LR_model')result = loaded_model.predict(np.array([[1, 2, 3, 4, 5]]))print(result)
参考资料:
Save and Load Machine Learning Models in Python with scikit-learn